Search results for "Quantum communication"

showing 7 items of 7 documents

Spin chains for two-qubit teleportation

2019

Generating high-quality multi-particle entanglement between communicating parties is the primary resource in quantum teleportation protocols. To this aim, we show that the natural dynamics of a single spin chain is able to sustain the generation of two pairs of Bell states - possibly shared between a sender and a distant receiver - which can in turn enable two-qubit teleportation. In particular, we address a spin-1/2 chain with XX interactions, connecting two pairs of spins located at its boundaries, playing the roles of sender and receiver. In the regime where both end pairs are weakly coupled to the spin chain, it is possible to generate at predefinite times a state that has vanishing inf…

PhysicsQuantum PhysicsSpinsmedia_common.quotation_subjectQuantum communication Quantum entanglement Quantum teleportation 1-dimensional spin chains Quantum InformationFidelityFOS: Physical sciencesQuantum entanglementQuantum Physics01 natural sciencesTeleportationNatural dynamics010305 fluids & plasmasCondensed Matter - Other Condensed Mattersymbols.namesakeQuantum mechanicsQubit0103 physical sciencessymbols010306 general physicsHamiltonian (quantum mechanics)Quantum Physics (quant-ph)Quantum teleportationmedia_commonOther Condensed Matter (cond-mat.other)
researchProduct

Asymptotics of correlation functions of the Heisenberg-Ising chain in the easy-axis regime

2016

We analyze the long-time large-distance asymptotics of the longitudinal correlation functions of the Heisenberg-Ising chain in the easy-axis regime. We show that in this regime the leading asymptotics of the dynamical two-point functions is entirely determined by the two-spinon contribution to their form factor expansion. Its explicit form is obtained from a saddle-point analysis of the corresponding double integral. It describes the propagation of a wave front with velocity $v_{c_1}$ which is found to be the maximal possible group velocity. Like in wave propagation in dispersive media the wave front is preceded by a precursor running ahead with velocity $v_{c_2}$. As a special case we obta…

Statistics and ProbabilityHigh Energy Physics - Theory[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]Correlation functionsWave propagationExact asymptotic resultsGeneral Physics and AstronomyFOS: Physical sciences01 natural sciences010305 fluids & plasmas[ PHYS.COND.GAS ] Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas][ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th]Condensed Matter - Strongly Correlated ElectronsQuantum spin chain0103 physical sciencesQuantum communication010306 general physicsDispersion (water waves)Mathematical PhysicsSaddlePhysicsStrongly Correlated Electrons (cond-mat.str-el)[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]Heisenberg modelMultiple integralMathematical analysisForm factor (quantum field theory)Statistical and Nonlinear PhysicsFunction (mathematics)High Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)Modeling and Simulation[ PHYS.COND.CM-SCE ] Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el]Group velocity[PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el]Condensed Matter - Quantum Gases
researchProduct

Transport of Quantum Correlations across a spin chain

2012

Some of the recent developments concerning the propagation of quantum correlations across spin channels are reviewed. In particular, we focus on the improvement of the transport efficiency obtained by the manipulation of few energy parameters (either end-bond strengths or local magnetic fields) near the sending and receiving sites. We give a physically insightful description of various such schemes and discuss the transfer of both entanglement and of quantum discord.

PhysicsQuantum PhysicsQuantum discordSpin modelFOS: Physical sciencesStatistical and Nonlinear PhysicsQuantum entanglementCondensed Matter PhysicsSettore FIS/03 - Fisica Della MateriaMagnetic fieldSpin chainStatistical physicsquantum communicationQuantum Physics (quant-ph)Focus (optics)entanglementQuantumSpin-½
researchProduct

Hybrid optomechanics for Quantum Technologies

2014

We review the physics of hybrid optomechanical systems consisting of a mechanical oscillator interacting with both a radiation mode and an additional matter-like system. We concentrate on the cases embodied by either a single or a multi-atom system (a Bose-Einstein condensate, in particular) and discuss a wide range of physical effects, from passive mechanical cooling to the set-up of multipartite entanglement, from optomechanical non-locality to the achievement of non-classical states of a single mechanical mode. The reviewed material showcases the viability of hybridised cavity optomechanical systems as basic building blocks for quantum communication networks and quantum state-engineering…

Physicsquantum technologiesQuantum PhysicsTechnologyCondensed Matter - Mesoscale and Nanoscale PhysicsThybrid quantum mechanicsFOS: Physical sciencesPhysics::Opticsquantum optomechanics7. Clean energyEngineering physicsSettore FIS/03 - Fisica Della MateriaQuantum technologyquantum state engineeringMesoscale and Nanoscale Physics (cond-mat.mes-hall)quantum communicationQuantum Physics (quant-ph)Quantum information scienceQuantum state engineeringOptomechanics
researchProduct

Extending Quantum Links: Modules for Fiber‐ and Memory‐Based Quantum Repeaters

2020

We analyze elementary building blocks for quantum repeaters based on fiber channels and memory stations. Implementations are considered for three different physical platforms, for which suitable components are available: quantum dots, trapped atoms and ions, and color centers in diamond. We evaluate and compare the performances of basic quantum repeater links for these platforms both for present-day, state-of-the-art experimental parameters as well as for parameters that could in principle be reached in the future. The ultimate goal is to experimentally explore regimes at intermediate distances, up to a few 100 km, in which the repeater-assisted secret key transmission rates exceed the maxi…

Memory coherenceNuclear and High Energy Physics530 PhysicsComputer scienceFOS: Physical sciencestrapped atoms/ionsquantum dotscolor centersQuantum stateElectronic engineeringddc:530quantum communicationElectrical and Electronic EngineeringQuantum information scienceQuantumMathematical PhysicsRepeaterQuantum Physicsbusiness.industryStatistical and Nonlinear Physics530 PhysikCondensed Matter Physicsquantum repeatersElectronic Optical and Magnetic MaterialsComputational Theory and MathematicsTransmission (telecommunications)Quantum dotPhotonicsQuantum Physics (quant-ph)businessAdvanced Quantum Technologies
researchProduct

Transfer of arbitrary two-qubit states via a spin chain

2015

We investigate the fidelity of the quantum state transfer (QST) of two qubits by means of an arbitrary spin-1/2 network, on a lattice of any dimensionality. Under the assumptions that the network Hamiltonian preserves the magnetization and that a fully polarized initial state is taken for the lattice, we obtain a general formula for the average fidelity of the two qubits QST, linking it to the one- and two-particle transfer amplitudes of the spin-excitations among the sites of the lattice. We then apply this formalism to a 1D spin chain with XX-Heisenberg type nearest-neighbour interactions adopting a protocol that is a generalization of the single qubit one proposed in Ref. [Phys. Rev. A 8…

FOS: Physical sciencesSettore FIS/03 - Fisica Della MateriaMagnetizationsymbols.namesakeAtomic and Molecular PhysicsLattice (order)Quantum mechanicstwo-qubit statesQuantum informationQuantum information sciencespin chainPhysicsQuantum Physicsspin chain quantum state transfer quantum communicationquantum state transferSpin quantum numberAtomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterQubitsymbolsand OpticsHamiltonian (quantum mechanics)Quantum Physics (quant-ph)Curse of dimensionalityOther Condensed Matter (cond-mat.other)
researchProduct

On-chip quantum frequency combs for complex photon state generation (Conference Presentation)

2020

A key challenge in today’s quantum science is the realization of large-scale complex non-classical systems to enable e.g. ultra-secure communications, quantum-enhanced measurements, and computations faster than classical approaches. Optical frequency combs represent a powerful approach towards this, since they provide a very high number of temporal and frequency modes which can result in large-scale quantum systems. Here, we discuss the recent progress on the realization of integrated quantum frequency combs and reveal how their use in combination with on-chip and fiber-optic telecommunications components can enable quantum state control with new functionalities, yielding unprecedented capa…

PhotonQuantum stateComputer scienceComputationFrequency combs Quantum communications Quantum information Complex systems Control systems Four wave mixing ManufacturingElectronic engineeringKey (cryptography)Settore ING-INF/02 - Campi ElettromagneticiState (computer science)Quantum information scienceRealization (systems)QuantumLaser Resonators, Microresonators, and Beam Control XXII
researchProduct